

R&I for industrial transition: ERA Industrial technology Roadmaps

From R&I to uptake and deployment – how EU and regions can support the green transition of industry

Doris Schröcker, Head of Unit, Industrial Research, Innovation and Investment Agendas European Commission, DG Research & Innovation

#EUResearchArea #ResearchImpactEU @EUScienceInnov

VANGUARD Initiative Innovation Policy Conference, Brussels, 15 June 2022

New ERA industrial technology roadmaps

The **New ERA Policy Agenda** thrives to "accelerate the green and digital transition of Europe's key industrial ecosystems" (Action 12)

To this end, **New ERA** industrial technology roadmaps are designed to "speed up the transfer of research results into the real economy (...), allowing an efficient use of the full set of support mechanisms to crowd in private investments in key cross-border projects".

The roadmaps provide key R&I input and actions to the transition pathways for strategic EU industrial ecosystems, following the **updated Industrial Strategy**.

Accelerating the green transition

Industrial technology roadmaps

- Evidence on technologies and state of play in TRL, investments and conditions
- Underpins outlook and conclusions for steps towards deployment

Areas addressed:

- → <u>Low</u> carbon technologies in enery-intensive industries
 - Published 8 April 2022
- For circular industrial technologies in 3 industrial eco-systems textiles, construction, energy-intensive industry sectors
 - Under preparation

EU policy context for low carbon industries

- Energy-intensive industries accounted for 17% of the EU's total greenhouse gas (GHG) emissions in 2019.
- Reduction of GHG emissions in these industries is a cornerstone to achieving the EU's climate goals for 2030 and 2050 (European Green Deal).
- Developing and deploying low-carbon technologies in these industries is key.

REPOWEREU TO CUT OUR DEPENDENCE ON RUSSIAN GAS

Decarbonising Industry by accelerating the switch to electrification and renewable hydrogen and enhancing our low-carbon manufacturing capabilities.

Russia's invasion of Ukraine strengthened the case for Europe to accelerate the green transition and become more energy efficient.

New ERA roadmap for low-carbon technologies in energy-intensive industries

- The ERA roadmap for low-carbon technologies, developed together with Member States, industry and other stakeholders, provides a list of key emerging low-carbon technologies for energy-intensive industries.
- It outlines scenarios for the transition of energy-intensive industries to climate neutrality and tools for leveraging R&I investments to accelerate development and uptake of low-carbon technologies.
- It elaborates on R&I needs, including public and private R&I investments, green patenting activity and enabling conditions, including regulatory framework, valorisation and standardisation aspects.

Published on 8 April 2022

Most relevant 'technological pathways' (technology groups)

The analysis results in a list of the **most relevant technological pathways** for the decarbonisation of energy-intensive industries at varying levels of technological readiness

Technological decarbonisation pathways in EII	Assessment of technology readiness (TRLs)	Application potential by sector
Electrification	low/ medium	High for chemicals, non-ferrous metals; iron & steel, ceramics, glass
Use of green hydrogen	medium	High for chemicals, iron & steel and non-ferrous metals
Carbon capture and storage	medium/ high	High for cement & lime, chemicals, iron & steel
Carbon capture for utilisation	medium	High for cement & lime, chemicals, iron & steel; but also for all other EII
Alternative fuels and feedstocks (excl. H2), bio-based resources, and integration of renewable energy	medium/ high	High for cement, chemicals, pulp & paper, non-ferrous metals, glass; but also for all other EII
Alternative materials and more energy efficient processes	medium/ high	High for cement & lime, chemicals, iron & steel, pulp & paper, non-ferrous metals, ceramics; but also for all other EII
Materials efficiency, secondary resources and waste valorisation (incl. recycling/CE and industrial symbiosis)	medium/ high	High for all EII

R&I investment needs

The roadmap points to a gap between the current overall R&I investments across energy-intensive sectors and the amount needed to reach EU Green Deal emission targets for 2030 and 2050. Market scale-up of the technologies

R&I investment needs

The biggest investment gap concerns investments in the coming years in **first-of-a-kind installations** for lowcarbon industrial technologies and further deployment of mature technologies.

Main outcomes

Key findings

Gap between current R&I investments and levels needed to reach the Green Deal objectives

A key barrier to rollout are the uncertainties around authorisations of first-of-a-kind installations

Patenting filings in green inventions by major EU companies continue to increase, but the role of SMEs in them remains unclear

EU green standards for low-carbon technologies appear to be underdeveloped in some areas Suggested actions

Establish an industrial alliance or similar initiative for crosssectoral low-carbon technologies in energy-intensive industries

Facilitate specific national sectoral and cross-sectoral strategies or programmes with key stakeholders as part of ERA policy agenda

Establish a community of practice to facilitate authorisation for FOAK installation for low-carbon industrial technologies

Improve the knowledge on patenting for green technologies and for energy-intensive industries

Facilitate further valorisation by exploring with industry the opportunity to open up IP on central (cross-sectoral) green inventions, widening the access to IP for licensing (e.g. patent pool) and knowledge transfer

Cooperate with European standardisation organisations (e.g. CEN, CENELEC) and industrial partnerships to identify and fill main standardisation gaps for innovative LC industrial technologies

Next steps

ERA Policy Agenda

The implementation of the roadmap helps accelerating the green and digital transition of Europe's key industrial ecosystems

Updated Industrial strategy

Roadmap findings will feed R&I priorities into the upcoming transition pathway for EU energyintensive industries ecosystem

Ongoing preparation: ERA roadmap for circular industrial technologies and business models

- Circular industrial technologies and business models in 3 industrial ecosystems:
 - Energy-intensive industries
 - Textiles
 - Construction
- Under preparation with Member States and stakeholder input to be published in Q4 2022
- Same structure as the low-carbon roadmap
 - 1 | Transition scenarios
 - 2 | Key technological pathways
 - 3 | R&I investments
 - 4 | Framework conditions

Circular industrial technologies for energy-intensive industries, textiles, and construction

Textiles

		Tech and non-tech solutions	TRL	potential	effects	performance	attractiveness
	Prep of material	 Alternative input materials Virtual fabric sourcing Design for sustainability (durability) 	4-8 4	** *** **	Likely Likely None	*	High None Low
	Yarn to textile	 Circular dyeing technologies Reduced use of inputs (chemicals, water) 	1-6 4-8	*	Likely None	*	Medium Medium
*	Production	 Optimisation and waste reduction Artificial intelligence for quality and optimisation 	9 3	* **	None Likely	***	Low None
Ä	Retail	 Sustainable packaging Digitally enhanced shop: Leasing and rental models 	4-6 4-6	***	None None	*** **	Medium High
2	Use	Augmented/Virtual Reality for tailoring Microfibre release minimisation Collaborative consumption models	7-8 1-3	* * ***	None None None	* * **	None Low High
¢	End of lifecycle	Sorting technologies Chemical recycling Digital product passports, blockchain Textiles collection and resale	7-8 4-6 1-3	*** *** **	None Likely None None	*** * **	Low Low None High

Construction

		Tech and non-tech solutions	TRL	Circularity potential	Negative effects	Economic performance	Startup attractivenes
	Sourcing an Design	 Raw materials sourcing Design and Development Green building design 	4-6 4-8	*** ***	Likely None	***	None Low
		 Construction and manufacturing approaches 	4-9	•	None	**	Medium
ŝ	Production and use	 Alternative use of inputs Network-based models Space sharing Performance-based models 	4-8	***	Likely	**	Medium
9	Recycling	 Interface with Customer and User Material Recycling Technologies Take back and reuse 	4-8 4-9	***	None None	***	High Medium
	Horizontal	Digital Tools	4-6	**	None	**	High

Circular industrial technologies for energy-intensive industries, textiles, and construction

Chemicals

	Tech and non-tech solutions	TRL	Circularity potential	Negative effects	Economic performance	Startup attractiveness	Need f
~	 Innovative materials of the process industries 	4-6	**	Likely	***	High	Yes
Material	· Inherent recyclability of materials	4-6	**	None	**	None	Yes
sourcing	 Regeneration of spent solvents 	9	**	None	**	None	Yes
	Recycling acids, alkaline, saline wastes	4-6	***	None	***	None	Yes
	Plastic waste recyling technologies (thermo, bio, etc)	4-8	**	Likely	**	High	No
	Biomass-tolerant processes, Biomass pre-treatment processes	9	**	None	**	Medium	Yes
	 Use of CO2 and CO as a building block in polymers 	4-6	**	Likely	•	Low	Yes
Production	Chemical reactions	4-9		None	**	None	Yes
	 Al and machine learning for discovering new catalysts 	4-6		None	**	None	Yes
	 Valorisation of wastewater in metal production 	7-8	**	Likely	**	Medium	Yes
-	Data sharing platforms and data security	4-7	***	Likely	***	Low	Yes
Recycling	 Coordination & management of connected processes 	4-6	••	None	***	Low	Yes
-	 Distributed ledger technologies 	4-7	**	None	**	None	Yes
Horizontal	 Modelling and simulation tools in material design 	9	*	Likely	*	Low	Yes
0	Digital twins and digital processes in plant engineering, data collection	7-8	**	Likely	***	Medium	Yes
	Tech and non-tech solutions	TRL	Circularity potential	Negative effects	Economic performanc	Startup e attractiven	ess
Design	Optimisation of the product design	3-8		None	**	Low	
-	 Industrial symbiosis / reuse of waste from other industrial processes 	2-8		Likely		Medium	1
\frown	Water efficiency	3-5	**	None	**	High	
Production	Heat recovery	1-4	**	None	**	None	
ITTI	 Optimisation of the sintering/firing process 	1-5		None		None	
	Resource use minimisation	6-7	*	Likely	•	None	
	Recycling technologies	3-6		None	***	Medium	n
End of life	Recycling of post-consumer ceramic	6-7	***	None	***	Low	

Digital technologies (e.g. passpor

Energy-intensive industries

Ceramics

	Tech and non-tech solutions	TRL	Circularity potential	Negative effects	Economic performance	Startup attractivenes:
	Use of carbon-fibre-reinforced polymers in EAF	4-6	•	not likely	**	None
	 RecoDust for Fe and Zn recovery from BOF dust 	4-6		not likely	**	None
	Leaching process for Zn recovery from BOF sludge	4-6	**	not likely	**	None
	Digitalization tools for CE focusing on monitoring	4-6	***	not likely	***	Medium
Residue	 Zn recovery from HIsarna filter dust 	4-6	•	not likely	•	None
valorisation &	· Induction furnace & bath injection for Zn recovery	7-8		not likely	*	None
content	MIDREX residue agglomeration for reuse in DR	7-8	•	not likely	•	None
recovery	· Waste plastic gasification for syngas production	4-6	**	not likely	*	None
	 Slag utilization strategies 	7-8	••	not likely	***	None
	 Two-step dust recycling of EAF dust 	7-8	*	likely	*	None
	Reuse of waste refractories	7-8	***	not likely	***	None
	Scrapyard management using sensors & machine learning	4-6	***	not likely	***	None
	Xray technology, infrared scanning , laser object detection	4-8	*	not likely	*	None
characterisa tion	Artificial Intelligence detection system technology	4-6	***	not likely	***	None
	 Robotic metal scrap cutting 	4-6	**	likely	***	None
	 LIBS for automatized sifting of mixed waste 	4-6	**	not likely	**	None
	streams					
Sorting						

Steel

Circular industrial technologies for energy-intensive industries, textiles, and construction

Critical Raw Materials circularity & EU's technology sovereignty

The roadmap analyses the existing evidence on reducing strategic dependencies on critical raw materials for the targeted ecosystems, through R&I driven actions (i.e. technologies for collection, sorting and recycling of CRMs waste).

Links with the Vanguard Initiative Geography of energy-intensive industries

Links with the Vanguard Initiative Thematic areas

Low-carbon technologies in energy-intensive industries

Circular technologies in energy-intensive industries, construction and textile ecosystems

Advanced Manufacturing for Energy Related Applications in Harsh Environments

Artificial Intelligence

High Performance Production through 3D-Printing

Efficient and Sustainable Manufacturing (ESM)

Vanguard Initiative and EFFRA

pean Commission

Links with the Vanguard Initiative The role of regions

- Findings from the low-carbon roadmap:
 - Not all Member States with high emission intensity allocate significant ERDF funding to low-carbon projects.
 - For example, overall ERDF funding intensity for lowcarbon projects (R&I and beyond) is comparatively low across all regions in Belgium and Austria and Estonia.
 - Some Member States have national R&I schemes, which also support decarbonisation investments in energy-intensive industries, but their relevance and magnitude for development and uptake of low-carbon technologies is difficult to gauge.

% of total EU funding in low-carbon technologies

Note: Projects relating to low-carbon technologies were identified through text analysis. Source: JRC TEDAM analysis based on JRC-WIFO database.

Links with the Vanguard Initiative The role of regions

Top EII-related technologies by NUTS2 region

Note: The colour of each region in the map reflects the EII-related CCMT technology in which the region performed best in terms of patenting output over the period 2010-2018. The attribution of patents to geographical region is based on applicant information.

Source: JRC SETIS elaboration of PATSTAT data for the EU Industrial R&D Investment Scoreboard.

Opportunities for regions to connect to tech roadmaps

- R&I priorities + stakeholders' (industry, SMEs)
 participation in EU programmes Horizon Europe
 - Partnerships: Processes4Planet, Clean Steel, Made in Europe, Bio-based Europe, Robotics, Hydrogen
 - EIT Knowledge and Innovation Communities
- Hubs4Circularity demonstrators, towards « first of a kind » installations (Horizon Europe)
- Regional innovation ecosystem development for the green transition of industry (e.g. technology infrastructures, clusters)
- Industrial Alliances, communities of practice

For more information please see:

Press release

Infosheet

ERA roadmap for low-carbon technologies in energy-intensive industries

@EUScienceInnov

#EUResearchArea #ResearchImpactEU

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

All images © European Union, unless otherwise stated. Image sources: © ivector # 235536634 # 249868181 # 251163013 # 266009682, # 273480523 # 362422833 # 241215668 # 244690530 # 245719946 # 251163053 # 252508849, © shooarts # 121467308, © Eucalyp # 359818614, 2020. Source: Stock.Adobe.com. Icons © Flaticon – all rights reserved.

